

Safe Back School App
Smart Tracing for School Reopening

VE441
Instructed by Pradeep Ray and Fethi Rabhi

Team:
Ruoxin Geng

 Bingcheng Hu
Daiyang Li
Pengqi Lu

Yuanjie Tao

Part 1. Requirement Analysis

1. Business Problem Recap

We are all in our “time of cholera”. The only difference is that in our world,
cholera is replaced with a much more fierce disease, COVID-19. The current
pandemic has caused a series of serious problems to all humankinds, including life
threats, economic crashes and most significantly, stoppage in almost every industry.

As students, what makes us concern most is likely the stoppage in schools,
especially the education after this summer. Shall we go back to campus for
traditional face-to–face mode? Or shall we keep online? A hybrid mode (some
courses in person and some online) has been considered broadly, especially after
the announcement from the United States Immigrants and Customs Enforcement
that “nonimmigrant F-1 and M-1 students attending schools operating entirely
online may not take a full online course load and remain in the United States.”

The primary concern is “is that really safe to go back to classrooms?” Maybe not

a single person can be a hundred percent confident. Thus, the second question to
ask becomes “how can we lower the risks as much as possible?” To answer this
question, our team decide to develop the “Safe Back School App”.

2. Features and User Stories

The value of our app is serving as a good platform to meet our customers’
requirements. The general requirements are composed of demands from two
categories of users. Students and stuff require a platform to record daily health
status and get notified when they have a high potential risk to get infected.
Administrators require a platform to easily monitor everyone’s health status and
find all close contact of an infected person efficiently.

Since the advantage of our app is based on the Bluetooth tracing technology, we
mainly focus on designing features for our major customer, students and stuff. The
general requirements for students and stuff can be split into complex features.
Those features can be classified into three functions which are Bluetooth tracing
function, data collection function and general function.

2.1 User story about Bluetooth tracing function

Requirement: Bluetooth tracing function

Feature: Keep Bluetooth on to automatically upload close contact information
As a: processor
So that: I can store the close contact information

I want to: collect address of other detected Bluetooth devices

Feature: Push notification when user is at high risk to be infected
As a: student
So that: I can get early detection and isolation and help control epidemic
I want to: get notified
GIVEN that my phone is on
WHEN anyone in my close contact database is diagnosed
THEN I can get a popup notification

2.2 User story about data collection function

Requirement: Data collection function

Feature: Daily Reminder

As a: student
So that: I won’t forget to fulfill the health report
I want to: set the app to notify me at a certain time
GIVEN that I am on the setting page
WHEN I set the notification to be pushed at 9:00 a.m.
THEN I can get a popup notification to fulfill the report
WHEN it’s 9:00 a.m.

Feature: Simplify health data filling process

As a: student
So that: I won’t feel tired about the repetitive work
I want to: set the app to notify me at a certain time
GIVEN that I am on the setting page
WHEN I set the notification to be pushed at 9:00 a.m.
THEN I can get a popup notification to fulfill the report
WHEN it’s 9:00 a.m.

Feature: Visualize health status

As a: student
So that: I can show it easily and take it as a proof to enter classrooms or canteens
I want to: have a visualized window to show my health status
GIVEN that I am on home page

WHEN I have a high risk to be infected
THEN I can see a red window with a crying face
WHEN I don’t have a high risk to be infected
THEN I can see a green window with a smile face

2.3 User story about general function

Requirement: users want an easy way to sign-up and get the latest update
information about Covid-19

Feature: Sign-up and Login

As a: student
So that: my account can be directly bound with university
I want to: use my campus email account to sign-up and login
GIVEN that I am at login and sign-up page
WHEN the university and email account I enter match
THEN I can see my account verified and bound with my university

Feature: Get access to brief information about Covid-19 situation in designated
countries

As a: student
So that: I can know how the epidemic develops without searching.
I want to: see a brief information like number of infected people in selected
countries
GIVEN that I am at home page
WHEN I set the country as China at setting page
THEN I can see number of infected, recovered and death people in China

Feature: Browse detailed information about Covid-19

As a: student
So that: I can know more about Covid-19 situations all over the world
I want to: browse detailed information
GIVEN that I am at home page
WHEN I click ‘more info’ button
THEN I can see detailed Covid-19 situations

3 Interface Design

3.1 Original Interface Prototype with Invision Studio

 We first designed the prototype of the User Interface (UI) using Invision
Studio. We used it because it allows us to quickly prototype our ideas without the
need to write any actual codes. As described on its website, Invision studio
combines design, prototyping, and collaboration into one harmonious workflow.
Below is an overview of our initial design.

3.2 Interface Implementation in Android Studio

 After prototyping UI in Invision Studio, we started to build the actual UI in
Android Studio since we are making a native Android application. Below is a

flowchart showing transition logics between different UIs (UIs with page numbers
on top-right corners are shown in the next page).
(All page numbers here are noted from left to right, up to down)

Part 2. Design and Implementation Details

1. Final software architecture

In this section, the software architecture will be introduced. To better explain
the software architecture, the C4 model was used to visualizing software
architecture, which is an "abstraction-first" approach to illustrate software
architecture.

First, the system context diagram is to be introduced. the system context
diagram is shown in figure 1. According to this diagram, the big picture of the
system can be seen, and it can help the developer to step back to review the whole
system. There are two types of users in the proposed system: The Administrator and
the university students. In this part, procedures like register and sign-in will be
ignored, and the analysis will concentrate on the relationship between the system
and the users.

As can be found in Figure 1, the university students will send the Bluetooth
UUIDs around them to the server, and the server will send the list of students who
could be infected, with the possibility, to the Administrator. And only after the
Administrator tells the server which students should be informed, then those
students will receive the information about their health state. Because we need to
gather the Bluetooth UUIDs around the user, the application cannot be implemented
with web APP, because the web APP cannot get the Bluetooth information of the
hardware, android phone.

Figure 1. The system context diagram for software architecture.

Other third-party components such as web browser will be used. A link on the
home page of the app will direct the user to the website that can inform them of the
latest trends of coronavirus in that university’s region. We will also add links to the
webpage of local CDC or university guidance on preventing Covid-19.

Second, the container diagram is going to be explained (Figure 2). It shows the
high-level shape of the software architecture, and by looking into it the
responsibilities of every component can be understood. There are 5 most significant
containers in the container diagram: The API server, the warning system, the
Database, the recommender system, and the Inform system.

Figure 2. The container diagram for software architecture.

The API server is the bond of the Android APP and the backend; the warning

system can inform the administrator which students could be infected and ask for
the permission of notify; the Database saves all the UUIDs that the user collected;
the recommender system use the data in the database to calculate who could be
infected, and the Inform system can inform the students who could be infected.

Most importantly, let’s look at the Recommender system. In this system, pipeline
and filter are used as the design pattern. The data is delivered from the database to
the filter, the recommender system, then whether the user has been in the same
place with a possibly infected student will be calculated. If so, according to the time,
distance (which can be estimated by the strength of the Signal), the probability of
that student being affected can be estimated.

Third, the component diagram is shown in Figure 3, which illustrates the
responsibilities of each components. Here Flask is chosen as the API server, and
apart from the API component, there are three main parts of components: one is for
sign-in, one is for Bluetooth information, and one is for warning. The sign-in

controller is connected with the security components, and it can help users to
register one account and change the password if needed. The Bluetooth controller
can save the Bluetooth UUIDs to the database and serve the infection information to
the API server, and the warning system can inform the students who passed the
students' selection components with the administrator’s instruction.

Figure 3. The component diagram for software architecture.

There are many advantages to the separation of components. Because these
components are parallel can will not affect each other, the whole system will not
break when one error happens in one component. And the API component can
control all the three controllers, so when one controller is broken, the API server
can weak it up soon. Besides, the performance of those controllers is not the same,
so break them apart and implement them separately can help to improve the overall
performance by allowing the significant part, the Bluetooth controller, to use more
resources. Finally, because it’s hard to come up with a perfect recommender system,
the Recommender system needs to be updated many times. Because the
recommender system is not embedded inside any components, it can be updated
easily

2. Sequence and Interaction Diagram

The app is divided into two parts - one for the general users and the other for the
administrators. The following part of the report contains the complete use case for
both cohorts.

For the users, it is required that the app can achieve:
 Notify the user if they have been exposed to any close contact with someone

postive in Covid-19 test. (U1)
 Remind and enable user to upload their latest health status. (U2)
 Periodically detect other mobile devices with the same app installed when the

bluetooth is on. (U3)

For the administrators, the app is expected to handle the following tasks:
 Get a list of currently infected and potentially infected students and notify them

of the risk of necessary. (A1)
 Synchronize the database with official government / hospital database

(simulated one in project demo) to ensure greater authenticity. (May be varied
based on actual third party implementation.)

 Manually update (add / remove people in and out of) the list of infection to make
instant change and send alarm immediately. (A2)

U1:

U2:

U3:

A1:

A2:

3. Key technologies used in our implementation

As summarized in Figure 4, we used Android Studio to develop our frontend,
Flask to develop the backend server and MySQL to develop the DataBase. Okhttp3 is
used by the client side to send http requests to the server. A recommender system
written in python will help the server to decide which info to be collected from the
database.

Figure 4. Key technologies used in front/back end of our APP

In Android Studio, java is used to define the internal logic for each activity (UI

pages seen by the user) and XML is used to design the UI for each page (see Part 1
for UI design screenshots). We chose to use Android Studio because it’s one of the
most widely used software for Android APP development and is user friendly. Also,
building a native app allows us to use Bluetooth for user tracking, which is an
important part in our app design. The user info, user health status, Bluetooth
tracking results and infection probability are sent/received using okhttp3 HTTP
client.

Flask is a micro web framework written is Python. We use it to write our server

which receives requests sent from the frontend. With the help of Flask, we can easily
handle http requests such as GET, POST and PUT. Once it collects the data needed,
the server will communicate with the DataBase to put/get further info according to
different requests.

The recommender system is another essential part of our backend. It’s an

intelligent AI system that will utilize the Bluetooth tracking data and users’ health
status from the DataBase to decide the infection probability of a specific user. A
person's health status is composed of the person's own symptoms and the health
status of his or her contacted person (Figure 5). Personal health symptoms include
fever, cough, and other symptoms. The influence of the surrounding people that this

person has touched is the most complicated part of the system, and this part is
assisted by Bluetooth scanning.

Figure 5. health status is composed of the symptoms and the health status of
contacted person

The detection of possible infected persons in the surrounding area consists of

two parts: the user directly scans the Bluetooth of another person, and two users
scan the same public Bluetooth (Figure 6). If the time between the user and the
potentially infected person exceeds the threshold, the user's probability of infection
will increase. The existence of public Bluetooth can also help schools obtain the
location information of students, so as to avoid cross-infection in public more
effectively. Besides, the location information is anonymous, so service providers
cannot know this information.

Figure 6. the user directly scans the Bluetooth of another person (a), and two

users scan the same public Bluetooth (b).

MyWebSQL is used to manage MySQL DataBase system over the web. All the
user related data are securely saved in our database. Currently we have 6 tables in
our database which includes Admins, Organizations (in case multiple schools are
using our app), infectionDetector (records infection probability of each user),
scannedBLE (Bluetooth addresses scanned by each user’s mobile phone), userBLE
(Bluetooth address of the user’s mobile phone) and users (Figure 7). Figure 8 is a
screenshot of Bluetooth addresses scanning info. Figure 9 is a screenshot of users
and their corresponding infection probabilities (testing data, not the real data).

Figure 7. Tables in the Database

Figure 8. Sample Bluetooth scanning info

Figure 9. Sample infection probability data

4. A summary of the key benefits and achievements

Our core idea is to develop the app that is user friendly and offer users one more
choice except lock-down policy under the epidemic situation. We select down
customers to university since it’s relatively easy for promotion and management as
a start-up. The key achievements of our app can be summarized into four parts.

Firstly, Bluetooth contact tracking technology is implemented as the main
function to prevent outbreak of coronavirus in university. The reason why we need
to achieve contact tracing function is that it can save lives by helping us diagnose
patients earlier, improving the likelihood they’ll be cured and reducing the chance
they’ll spread the virus to others. As long as the user’s Bluetooth is on, the app can
record information of nearby device and contact duration. Contact tracing based on
Bluetooth technology can replace the traditional contact tracking based on manual
screening and paperwork because it’s a simpler, quicker and more accurate way.

Secondly, the app offers school administrators a great platform to collect and
visualize all students’ health status. Students’ health data are collected and updated
automatically to the database. We design a clear user interface for administrator to
know who is infected and the potential infected students. The infection probability
calculated based on user’s symptoms and contact time with infected person is also
offered to administrator to make the decisions.

Thirdly, smart alert is also an important feature for our users. Once the user has
contacted with an infected person, the app would automatically send the warning
message to the user. This can help user to have a clear understanding and
judgement about the surrounding environment.
Lastly, the design of questionnaire in daily health report aims to avoid the tedious
and repetitive work. The form memorized the latest information user entered so
that users don’t need to waste time on filling the same content. They just need to
modify the content when they get new symptoms. Such design matches our core
idea and increases user viscosity to some extent.

Part 3. Team Organization and Appraisal

1. Responsibilities:

Daiyang Li:
 Initiate and schedule group meetings
 Design the logic of client App
 Optimize Bluetooth module and its performance
Bingcheng Hu:
 Design the architecture of the server side.
 Implement the recommender system, the database construction and the bridge

between them.
 Build the cloud server with TenCent Cloud.
Yuanjie Tao:
 Design questionnaires and make customer interviews.
 Business and marketing analysis.
 Implement a basic connection between frontend and backend.
Ruoxin Geng:
 Design the user interface for the app using Sketch
 Add interactions between different pages and generate workflow chart using

InVision Studio
 Make a showcase video for the app
Pengqi Lu:
 Implement the UI using Android Studio on the client side.
 Implement the APP logic transitions on the client side
 Set up http communication on the client side

2. Difficulties and Challange:

 That trans-pacific team must work against time difference
 Steep learning curve for members with limited prior knowledge about app dev.
 Reduced efficiency in communication with mentors in remote mode
 In order to achieve high-efficiency SQL query, various different queries were

tested, and finally the fastest query method was found.
 In order to implement an instant recommendation system, the background

needs to be refreshed efficiently. Finally reached the frequency of refreshing
every minute. When you continue to increase the frequency, the server will
respond slowly to the app.

 Because the server is in Shanghai and the developers are in the United States,
the server delay is relatively long.

 The message from the server may take a long time to transmit to the client side
(since the server is in China, and we are testing the client in the US).

 The user interface may not be compatible with mobile phones with different
screen size

3. Overall appraisal:

Despite the aforementioned challanges and difficulties, in this course we managed
to achieve:
 Clearly define a business problem
 Justify why our app helps solve the problem
 Implement an MVP of the app through joint effort
 An understanding of agile method in development

4. What I think could be done differently:

 Meet with business mentors more frequently to constantly make mild

adjustments
 Communiate within the team in a more unified way to avoid overlap of work done.
 Work more closely with key partners and take their need into account in the app.
 We may use non-relational databases. Because our system does not require high

real-time performance, using MySQL results in slower refresh speed.
 Will use a larger bandwidth server, because the current server bandwidth is only

1M per second, so that the user experience is not excellent.
 To make the UI design compatible with different mobile phones, we need to

avoid hard-coded layout sizes and may try available layout width qualifiers.

Part 4. Code Inspection

https://github.com/boldwings/VE441_Undecided

https://github.com/boldwings/VE441_Undecided

